Global existence and blow-up for harmonic map heat flow
نویسندگان
چکیده
منابع مشابه
Infinite time blow - up for half - harmonic map flow from R into S 1 ∗
We study infinite time blow-up phenomenon for the half-harmonic map flow { ut = −(−∆) 1 2u+ ( 1 2π ∫ R |u(x)−u(s)| |x−s|2 ds ) u in R× (0,∞), u(·, 0) = u0 in R, (0.1) with a function u : R×[0,∞)→ S. Let q1, · · · , qk be distinct points in R, there exist an initial datum u0 and smooth functions ξj(t) → qj , 0 < μj(t) → 0, as t → +∞, j = 1, · · · , k, such that the solution uq of Problem (0.1) h...
متن کاملRigidity in the Harmonic Map Heat Flow
We establish various uniformity properties of the harmonic map heat ow, including uniform convergence in L 2 exponentially as t ! 1, and uniqueness of the positions of bubbles at innnite time. Our hypotheses are that the ow is between 2-spheres, and that the limit map and any bubbles share the same orientation.
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملGlobal Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources
This paper deals with p-Laplacian systems ut − div(|∇u|p−2∇u) = ∫ Ωv α(x, t)dx, x ∈Ω, t > 0, vt − div(|∇v|q−2∇v) = ∫ Ωu β(x, t)dx, x ∈ Ω, t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ RN , where p,q ≥ 2, α,β ≥ 1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2009
ISSN: 0022-0396
DOI: 10.1016/j.jde.2008.09.011